Perbandingan Metode Ordinary Least Square (OLS) dan Metode Partial Least Square (PLS) Untuk Mengatasi Multikolinearitas
Abstract
Miulticollinearity is a violation of classical assumptions, which is why parameter estimation with the Ordinary Least Squares (OLS) method becomes inefficient but still remains unbiased and consistent. One method that can be used to overcome the limitations of the Ordinary Least Squares (OLS) method is the Partial Least Squares (PLS) method. The purpose of this paper is to compare the efficiency level of the two methods, namely OLS and PLS. This writing uses the literature review method, using 10 readings consisting of 2 books and 8 journal articles to be able to define and analyze the comparison of the level of efficiency of the OLS and PLS methods. The comparison is based on the acquisition of bias value and Mean Square Eror (MSE) value. This analysis shows the OLS method to be an efficient estimator when there is no correlation between independent variables. And PLS has a small bias and MSE value and continues to decrease as the sample size increases. In addition, the PLS method should be used when the independent variables have a correlation of more than or equal to 0.8 (≥/= 0.8).
Keywords
Full Text:
PDFReferences
M. Masruroh and R. Subekti, “APLIKASI REGRESI PARTIAL LEAST SQUARE UNTUK ANALISIS HUBUNGAN FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN MANUSIA DI KOTA YOGYAKARTA,” MEDIA STATISTIKA, vol. 9, no. 2, 2017, doi: 10.14710/medstat.9.2.75-84.
A. Sukmono and S. Subiyanto, “PENGGUNAAN PARTIAL LEAST SQUARE REGRESSION (PLSR) UNTUK MENGATASI MULTIKOLINEARITAS DALAM ESTIMASI KLOROFIL DAUN TANAMAN PADI DENGAN CITRA HIPERSPEKTRAL,” Geoid, vol. 10, no. 1, 2014, doi: 10.12962/j24423998.v10i1.702.
E. R. Matulessy and A. U. Tambunan, “Analisis Regresi PLS Sebagai Alternatif Dari Regresi Linear Berganda: Studi Kasus Pengaruh Luas Lahan dan Luas Panen Terhadap Produksi Padi di Kabupaten Manokwari,” Jurnal Pendidikan dan Konseling (JPDK), vol. 5, no. 1, 2023.
Gujarati, “Ekonometrika dasar,” Erlangga, vol. 4, no. 1, 1999.
D. N. Gujarati, D. C. Porter, E. Mardanugraha, S. Warhani, and C. Mangusong, “Dasar-Dasar Ekonometrika (Basic Econometrics),” Salemba Empat, vol. 1, no. 5, 2015.
G. Mardiatmoko, “Pentingnya Uji Asumsi Klasik Pada Analisis Regresi Linier Berganda (Studi Kasus Penyusunan Persamaan Alolometrik Kenari Muda),” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 3, 2020.
R. Indahwati, D. Kusnandar, and E. Sulistianingsih, “Metode Partial Least Squares Untuk Mengatasi Multikolinearitas Pada Model Regresi Linear Berganda,” Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 3, no. 03, 2014.
E. Supriyadi, S. Mariani, and Sugiman, “Perbandingan Metode Partial Least Square (PLS) Dan Principal Component Regression (PCR) Untuk Mengatasi Multikolinearitas Pada Model Regresi Linear Berganda,” UNNES Journal of Mathematics, 2017.
M. Sriningsih, D. Hatidja, and J. D. Prang, “PENANGANAN MULTIKOLINEARITAS DENGAN MENGGUNAKAN ANALISIS REGRESI KOMPONEN UTAMA PADA KASUS IMPOR BERAS DI PROVINSI SULUT,” JURNAL ILMIAH SAINS, vol. 18, no. 1, 2018, doi: 10.35799/jis.18.1.2018.19396.
W. Resti Anggraeni, N. Nessyana Debataraja, and S. Wira Rizki, “ESTIMASI PARAMETER REGRESI RIDGE UNTUK MENGATASI MULTIKOLINEARITAS,” 2018
DOI: https://doi.org/10.5281/zenodo.10476911
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rizky Arief Gunawan, Dheny Prasetya Zulkarmain, Sheptian Tunjung Arianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN : 3025-6704